Official Web FeTech UniMAP

    Design of multiple-layer microwave absorbing structure based on rice husk and carbon nanotubes

    Authors and affiliations
    Lee Yeng Seng
    F. H. Wee
    H. A. Rahim
    Mohamed Fareq Abdul Malek
    Y. K. You
    Z. Liyana
    A. A. M. Ezanuddin

    1.Department of Electronic Engineering Technology, Faculty of Engineering Technology Universiti Malaysia Perlis (UniMAP)Ara uMalaysia
    2.School of Computer and Communication Engineering Univerisiti Malaysia Perlis (UniMAP)Arau Malaysia
    3.Faculty of Engineering and Information Sciences University of Wollongong in Dubai (UOW)Dubai United Arab Emirates
    4.Radio Communication Engineering Department (RaCED), Faculty of Electrical Engineering Universiti Teknologi Malaysia Skudai Malaysia

    This paper presents a multiple-layered microwave absorber using rice husk and carbon nanotube composite. The dielectric properties of each layer composite were measured and analysed. The different layer of microwave absorber enables to control the microwave absorption performance. The microwave absorption performances are demonstrated through measurements of reflectivity over the frequency range 2–18 GHz. An improvement of microwave absorption <−20 dB is observed with respect to a high lossy composite placed at bottom layer of multiple layers. Reflectivity evaluations indicate that the composites display a great potential application as wideband electromagnetic wave absorbers. References 1. Y.S.Y. Lee, M.M.F.B.A. Malek, E.M.E.E.M. Cheng, W.W. Liu, K.Y. You, M.N. Iqbal, F.H. Wee, S.F. Khor, L. Zahid, M.F.B. Haji Abd Malek, Experimental determination of the performance of rice husk-carbon nanotube composites for absorbing microwave signals in the frequency range of 12.4–18 GHz. Prog. Electromagn. Res. 140, 795–812 (2013) CrossRefGoogle Scholar 2. M.N. Iqbal, M.F. Malek, Y.S. Lee, L. Zahid, M.S. Mezan, A study of the anechoic performance of rice husk-based, geometrically tapered, hollow absorbers. Int. J. Antennas Propag. 2014, 1–9 (2014) Google Scholar 3. Y. S. Lee, F. Malek, E. M. Cheng, W. W. Liu, F. H. Wee, M. N. Iqbal, L. Zahid, F. Abdullah, A. Z. Abdullah, N. S. Noorpi et al., in Theory and Applications of Applied Electromagnetics, Composites Based on Rice Husk Ash/Polyester for Use as Microwave Absorber, vol 344 (Springer, 2015), pp. 41–48 4. P. Saini, V. Choudhary, B.P.P. Singh, R.B.B. Mathur, S.K.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113(2–3), 919–926 (2009) CrossRefGoogle Scholar 5. Z. Wang, G. Zhao, Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2–20 GHz. Open J. Compos. Mater. 3(April), 17–23 (2013) CrossRefGoogle Scholar 6. W.-S. Jou, H.-Z. Cheng, C.-F. Hsu, The electromagnetic shielding effectiveness of carbon nanotubes polymer composites. J. Alloys Compd. 434–435, 641–645 (2007) CrossRefGoogle Scholar 7. Y. Ye, L.X. Song, X.L. Song, T. Zhang, Analysis and design of transparent microwave absorbing materials based on the destructive interference at the microwave range. Adv. Mater. Res. 887–888, 432–436 (2014) CrossRefGoogle Scholar 8. A. Tennant, B. Chambers, Design of wideband Jaumann radar absorbers with optimum oblique incidence performance. Electron. Lett. 30(18), 1530–1532 (1994) CrossRefGoogle Scholar 9. Y. Luo, Y. Zhuang, S. Zhu, Thin and broadband Salisbury screen absorber using Minkowski fractal structure. APMC 2009—Asia Pac. Microw. Conf. 2009, 2573–2576 (2009) CrossRefGoogle Scholar 10. Y.K. Fetisov, K.E. Kamentsev, A.Y. Ostashchenko, Magnetoelectric effect in multilayer ferrite-piezoelectric structures. J. Magn. Magn. Mater. 272(III), 2064–2066 (2004) ADSCrossRefGoogle Scholar 11. K.E. Kamentsev, Y.K. Fetisov, G. Srinivasan, Ultralow-frequency magnetoelectric effect in a multilayer ferrite-piezoelectric structure. Tech. Phys. 52(6), 727–733 (2007) CrossRefGoogle Scholar 12. D.M. Wells, J. Cheng, D.E. Ellis, B.W. Wessels, Local electronic and magnetic structure of mixed ferrite multilayer materials. Phys. Rev. B 81(17), 1–12 (2010) CrossRefGoogle Scholar 13. M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004) ADSCrossRefGoogle Scholar 14. A. Kazemzadeh, A. Karlsson, Multilayered Wideband Absorbers for Oblique Angle of Incidence. IEEE Trans. Antennas Propag. 58(11), 3637–3646 (2010) ADSCrossRefGoogle Scholar 15. M. Cao, J. Zhu, J. Yuan, T. Zhang, Z. Peng, Z. Gao, G. Xiao, S. Qin, Computation design and performance prediction towards a multi-layer microwave absorber. Mater. Des. 23(6), 557–564 (2002) CrossRefGoogle Scholar 16. I. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, D. Puryanti, Magnetic and microwave absorbing properties of magnetite thermoplastic natural rubber nanocomposites. J. Magn. Magn. Mater. 322(21), 3401–3409 (2010) ADSCrossRefGoogle Scholar 17. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon N. Y. 48(3), 788–796 (2010) CrossRefGoogle Scholar 18. F. Xu, L. Ma, Q. Huo, M. Gan, J. Tang, Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. J. Magn. Magn. Mater. 374, 311–316 (2015) ADSCrossRefGoogle Scholar 19. B. Belaabed, J.L. Wojkiewicz, S. Lamouri, N. El Kamchi, T. Lasri, Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. J. Alloys Compd. 527, 137–144 (2012) CrossRefGoogle Scholar 20. P. Bhattacharya, S. Dhibar, M.K. Kundu, G. Hatui, C.K. Das, Graphene and MWCNT based bi-functional polymer nanocomposites with enhanced microwave absorption and supercapacitor property. Mater. Res. Bull. 66, 200–212 (2015) CrossRefGoogle Scholar